首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24146篇
  免费   2574篇
  国内免费   1786篇
工业技术   28506篇
  2024年   31篇
  2023年   242篇
  2022年   430篇
  2021年   576篇
  2020年   662篇
  2019年   592篇
  2018年   598篇
  2017年   770篇
  2016年   819篇
  2015年   867篇
  2014年   1209篇
  2013年   1546篇
  2012年   1586篇
  2011年   1745篇
  2010年   1393篇
  2009年   1500篇
  2008年   1432篇
  2007年   1702篇
  2006年   1713篇
  2005年   1418篇
  2004年   1157篇
  2003年   1084篇
  2002年   970篇
  2001年   858篇
  2000年   665篇
  1999年   551篇
  1998年   474篇
  1997年   373篇
  1996年   312篇
  1995年   252篇
  1994年   202篇
  1993年   133篇
  1992年   116篇
  1991年   93篇
  1990年   103篇
  1989年   66篇
  1988年   44篇
  1987年   38篇
  1986年   31篇
  1985年   24篇
  1984年   22篇
  1983年   13篇
  1982年   23篇
  1981年   7篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1964年   5篇
  1957年   4篇
  1956年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
2.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
3.
Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor’s interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.  相似文献   
4.
The n-type thermoelectric Bi1.9Lu0.1Te3 was prepared by microwave-solvothermal method and spark plasma sintering. The magnetic field and temperature dependences of transverse magnetoresistance measured within temperature 2–200 K interval allow finding the peculiarities characteristic for strongly disordered and inhomogeneous semiconductors. The first peculiarity is due to appearance of linear-in-magnetic field contribution to the total magnetoresistance reflected in a crossover from quadratic magnetoresistance at low magnetic fields to linear magnetoresistance at high magnetic fields. The linear magnetoresistance can result from the Hall resistance picked up from macroscopically distorted current paths due to local variations in stoichiometry of the compound studied. The second peculiarity is that both linear magnetoresistance magnitude and crossover field are functions of carrier mobility which is in agreement with the Parish and Littlewood model developed for disordered and inhomogeneous semiconductors. An increase in the mobility due to a decrease in temperature is accompanied by an increase in the magnetoresistance magnitude and a decrease in the crossover field. Finally, the third peculiarity is related to the remarkable deviation of the total magnetoresistance measured at various temperatures from the Kohler's rule. Presence of strong inhomogeneity and disorder in the Bi1.9Lu0.1Te3 structure concluded from the magnetoresistance peculiarities can be responsible for the remarkable reduction in the total thermal conductivity of this compound.  相似文献   
5.
针对当前优质炼焦煤资源越来越少,而高炉生产对焦炭质量指标要求越来越高的情况下,对具有低灰、高硫特点的X煤进行了系统的炼焦试验研究。结果发现,在炼焦生产中合理配加5%~8%的X煤不会造成焦炭硫分升高的不利影响,焦炭灰分下降明显,强度保持稳定。该研究成果成功应用于首钢炼焦生产,焦炭各项指标均达标,这不仅扩大了炼焦煤的使用范围,而且在资源使用方面为公司焦炭灰分的降低提供了支持。  相似文献   
6.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
7.
8.
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”.  相似文献   
9.
本文给出一种采用DPT估计SNCK信号时宽—带宽积的方法,并通过仿真该估计方法的性能与其它估计方法进行比较.首先给出SNCK信号参数估计的一般过程.为了便于计算和理论推导,根据估计出的中心频率将接收到的SNCK信号搬移到零频,从而进一步估计其它参数,如采用DPT估计SNCK信号时宽带宽积.本文将重点研究采用DPT算法估计SNCK信号值的方法.  相似文献   
10.
The process of electrodeposition can be described in terms of a reaction-diffusion partial differential equation (PDE) system that models the dynamics of the morphology profile and the chemical composition. Here we fit such a model to the different patterns present in a range of electrodeposited and electrochemically modified alloys using PDE constrained optimization. Experiments with simulated data show how the parameter space of the model can be divided into zones corresponding to the different physical patterns by examining the structure of an appropriate cost function. We then use real data to demonstrate how numerical optimization of the cost function can allow the model to fit the rich variety of patterns arising in experiments. The computational technique developed provides a potential tool for tuning experimental parameters to produce desired patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号